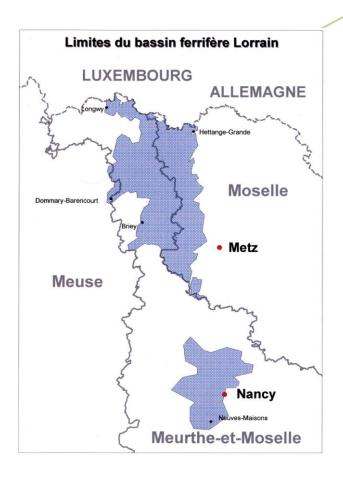
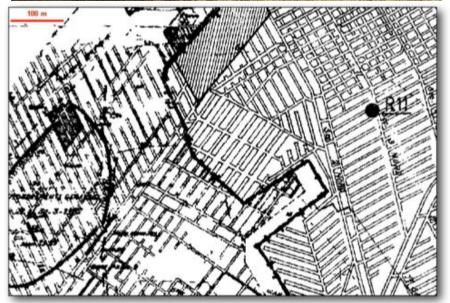


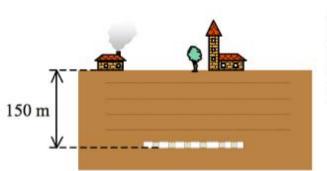
Evaluation probabiliste de la probabilité d'occurrence des affaissements miniers par la prise en compte de lois de vieillissement

O. Deck, Y. Gueniffey, H. Baroudi et H. Hosni

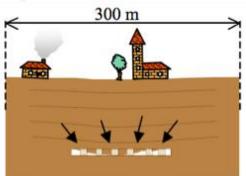


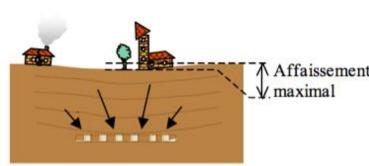


Le risque minier en Lorraine



180 communes40 000 km de galeries





Le risque minier en Lorraine

18 cas d'affaissements connus depuis 1902

Peut-on prévoir la probabilité d'occurrence des affaissements miniers ?

Sur une commune: NON

Sur l'ensemble du territoire : PEUT-ETRE

Objectif

- Tester des modèles de prévision de la probabilité d'occurrence des affaissements miniers.
- Approche analytique basée sur :
 - le calcul explicite d'un coefficient de sécurité et de son évolution dans le temps.
 - une formalisation analytique de l'expertise.
 - une approche de type Monte Carlo.
- Un outil d'aide à la réflexion plus que d'aide à la décision.

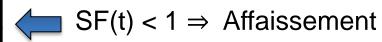
Principe

Base de données initiale

Base de données complétée

Zone	Couche	tO	T	Н	k'		
1	1						
1	2						
2	3	Valeurs					
		connues					
538	716						

Zone	couche	tO	Т	Н	k'	R0	R∞	k
1	1						-	
1	2	Valeurs			Valeurs			
2	3							
			conr	nues		SI	mulé	es
538	716							



	Années					
	2000	2025	2050		2200	
Simulation 1	10	15	30		120	
	Nombre d'affaissements					
Simulation 200	13	17	32		110	

Moyenne	10	16	30	 115
Ecart Type	2	3	3	 5

Coefficient de sécurité :

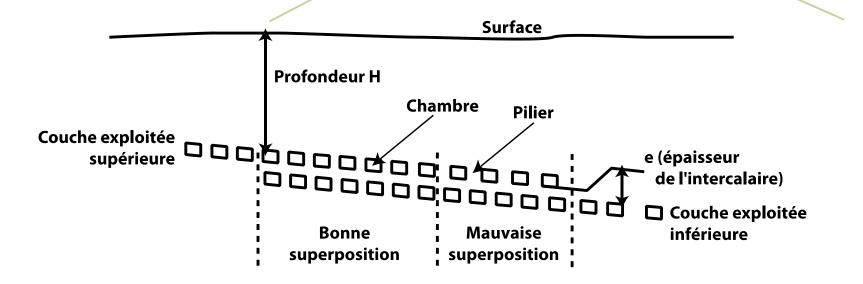
$$SF(t) = \frac{Résistance(t)}{Sollicitation}$$

Un coefficient de sécurité

Résistance caractéristique de la couche

Temps calendaire

Temps calendaire
$$SF_{ij}(t) = \frac{R_{ij}(t)}{S_{ij}}$$
 Sollicitation des piliers (compress

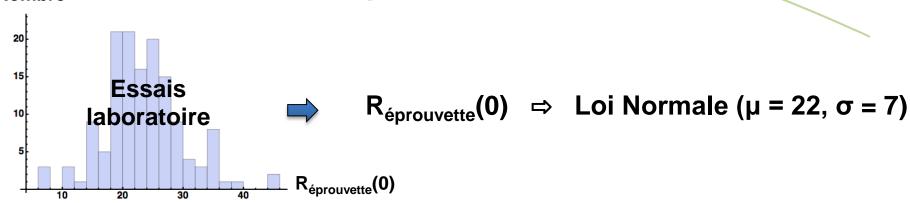

piliers (compression)

$$S_{ij} = k \cdot \frac{\gamma \cdot H_{ij}}{1 - \tau_{ij}}$$
 Poids du recouvrement Taux de défruitement

Influence de l'environnement minier

 $SF_{\text{zone}}(t) = Min[Sf_{\text{couches}}(t)] < 1 \implies \text{affaissement de la zone}$

Des paramètres +/- incertains



Variables mal connues :

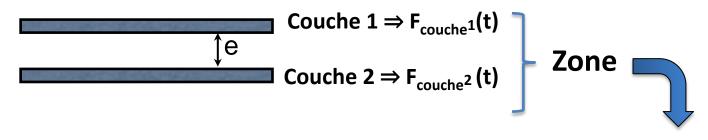
- R_{pilier}(0): Résistance initiale des piliers (lors de l'exploitation).
- R_{pilier}(∞): Résistance finale des piliers (à très long terme) ≃ 7,5 MPa
- Effets d'échelle : $R_{\text{\'eprouvette}} \Rightarrow R_{\text{pilier}} \Rightarrow R_{\text{couche}}$
- Influence de l'épaisseur de l'intercalaire (cas des multicouches).
- Influence de la bonne/mauvaise superposition.
- Loi de décroissance de la résistance.

Les Résistances

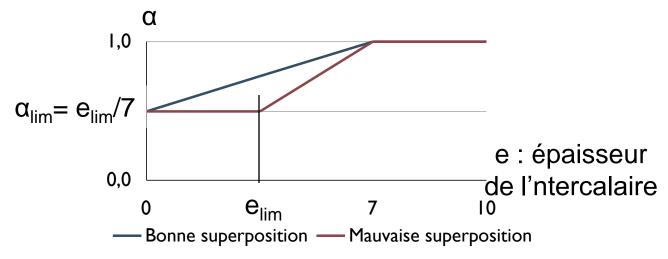
Effet d'échelle 1

 $R_{\text{pilier}}(0) \Rightarrow \text{Loi Normale } (\mu < 22, \sigma < 7)$

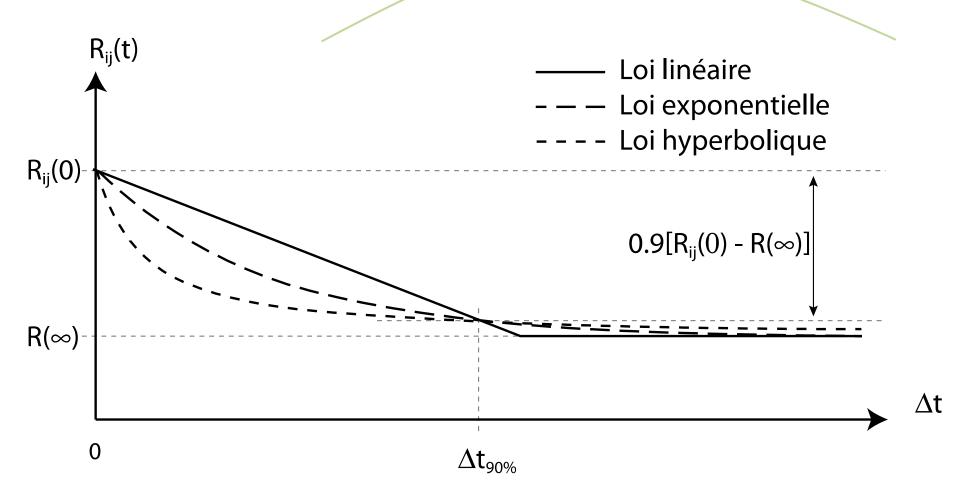
Effet d'échelle 2


 $R_{\text{couche}}(0) = Min[R_{\text{pilier},1}(0)...,R_{\text{pilier},n}(0)]$ ⇒ Loi de Gumbel

On considère que R_{pilier}(0) caractérise la résistance d'une petite zone d'environ 1ha

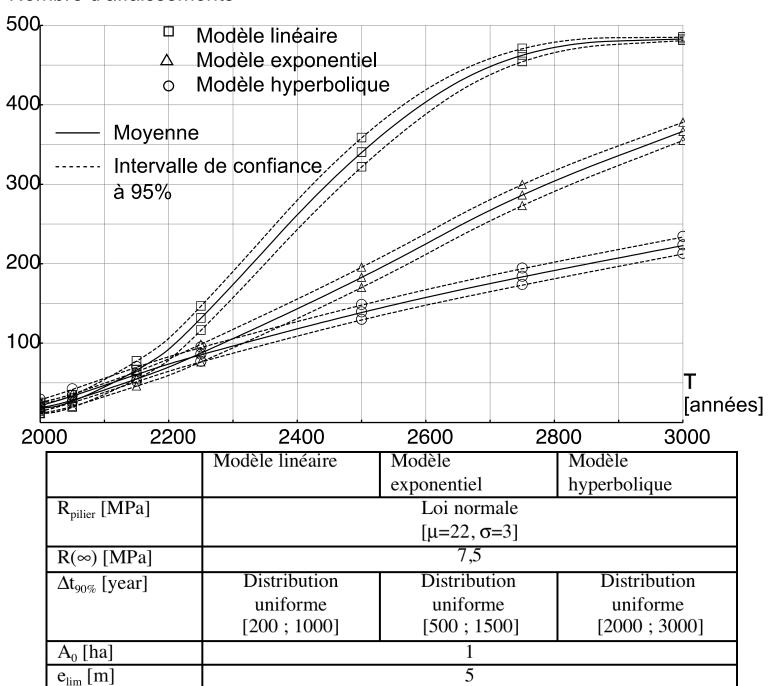

Influence de la superposition

111 zones bien superposées217 zones mal superposées


Formalisation du jugement d'expert

$$SF_{zone}(t) = Min[\alpha Sf_{couche1}(t); \alpha Sf_{couche2}(t)]$$

Influence du temps



Influence cumulée du fluage, de la dégradation des propriétés mécaniques, de l'écaillage des piliers, etc.

Eléments de calage

- 18 affaissements en l'an 2000
- Taux d'arrivée d'environ 1 affaissement tous les 5 ans
- Nombre de zones stables à long terme de l'ordre de 10%

Nombre d'affaissements

Conclusions

- L'approche probabiliste permet de s'interroger sur l'influence des différents paramètres.
 - Influence de l'intercalaire
 - Influence de la surface des exploitations
 - Résistance à long terme
- Il existe plusieurs modèles qui peuvent être calés sur les observations.
- Les modèles différent essentiellement par la loi de décroissance et le paramètre Δt_∞.
- Il faut attendre au moins 150 ans pour que les modèles divergent significativement.