Modeling time and spatial dependence of degradation processes through gamma processes

M.Oumouni¹, F.Schoefs¹, B. Castanier²

¹Équipe Trust, Institut de Recherche en Génie Civil et Mécanique, Université Bretagne Loire ²Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Université Bretagne Loire

Trust's simnar, September 2016

2 Gamma Process with random field rate

3 Quantities of Interest and parameters reference

4 Simulation results

Introduction

Gamma Process with random field rate Quantities of Interest and parameters reference Simulation results Conclusion

Why spatial variability and uncertainty?

The degradation in the structure varies in space and in time Qualifies the non-homogeneity in the mechanical and physical properties. Uncertainty : the intrinsic aleatory of the material

Source of spatial variability

- intrinsic aleatory of the composition
- the environmental conditions during the life of the structure (temperature, humidity, chloride penetration)
- the implementation conditions (workmanship : anisotropy and heterogeneity)
- It influences the predictions of degradation and the reliability of the structural component

Introduction

Gamma Process with random field rate Quantities of Interest and parameters reference Simulation results Conclusion

Probabilistic approaches for modeling degradation process

- Physical model approach
 - Simulation of physical quantities varying in space and in time.
 - Transport equation with random coefficient and data (Stewart et all; Shinozuka et all,...)
 - Curse of dimensionality
 - Huge cost of the resolution (MC, Galerkin, Sparse grid)
- Meta-model approach (classical model)
 - Based on measurable quantities to fit the model
 - Stochastic process (Gamma process, Brownian motion,...)

Extension of the classical model

- Incorporate the spatial variability
- Predict the degradation evolution temporally and Spatially
- based on the classical temporal model (gamma process)
- Mathematical and numerical computation benefits
- 🗢 Spatio-temporal random field

Gamma process

 (X_t) is a Gamma process with parameter $(\alpha, \beta) > 0$ (α increasing function) if

- X₀ = 0 p.s
- X_t has independent positive increments
- $X_{t+s} X_s \sim gamma(lpha(t+s) lpha(s), eta)$ (gamma distribution)
- $\alpha(\cdot)$ linear : X_t is stationary process
- $\alpha(\cdot)$ non-linear : X_t is non-stationary process

properties

- The mean $\mu(t) = rac{lpha(t)}{eta}$ and variance $\sigma = rac{lpha(t)}{eta^2}$
- Scaling $\gamma X_t = Gamma(\alpha, \beta/\gamma)$
- Additivity $Gamma(\alpha_1, \beta) + Gamma(\alpha_2, \beta) = Gamma(\alpha_1 + \alpha_2, \beta)$

•
$$\mathbb{E}[\log(X_t)] = \psi(\alpha(t)) - \log(\beta)$$

• $Var[log(X_t)] = \psi_1(\alpha(t))$

where $\psi(r) = \frac{\Gamma'(r)}{\Gamma(r)}$ digamma function and ψ_1 its derivative.

200

Spatio-temporal random field

A sequence of random variables which is indexed in spatio-temporal box

$$\{G(t,x); (t,x) \in \mathbb{R}^+ \times \mathbb{R}^d\}.$$

Separable random field

- No interaction between time and space
- Widely used even in situations in which they are not always physically justifiable

two constructions

- G(t,x) = X(t) + Y(x)➡ additive field
- \blacktriangleright multiplicative field G(t, x) = X(t)Y(x)

Everything else are non-separable random field

・ 同 ト ・ ヨ ト ・ ヨ ト

1

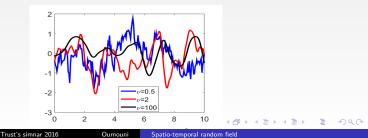
Stationary gaussian random field

Y(x) is defined by the covariance of Matèrn model :

$$c(r) = \frac{\sigma^2 2^{\nu-1}}{\Gamma(\nu)} \left(\frac{\sqrt{2}\nu r}{lc}\right)^{\nu} \mathcal{K}_{\nu}\left(\frac{\sqrt{2}\nu r}{lc}\right)$$

- exponential ($\nu = 0.5$), $c(r) = \sigma^2 e^{-\frac{r}{t_c}}$
- <u>Gaussian</u> $(\nu = \infty)$, $c(r) = \sigma^2 e^{-\frac{r^2}{2k^2}}$

 σ^2 variance, lc correlation length, \mathcal{K}_ν modified Bessel function, $\nu>0$ smoothness parameter.



Degradation model

 $X_t = Ga(lpha(t),\eta)$ Gamma process, $Z(x) = e^{Y(x)}$ log-normal field,

$$\mathsf{G}_t(x) := \mathsf{X}_t \mathsf{Z}(x) \sim \mathsf{Ga}(lpha(t), \eta e^{-\mathsf{Y}(x)})$$

Some raison for choosing log-normal distribution

- Products of positive independent random variables converges to a log-normal (CLM)
- Mathematical and statistical benefits in practice (ML, covariance)
- $Z \sim Z^{-1}$ thus $G_t(x) \sim X_t/Z(x)$ in law.

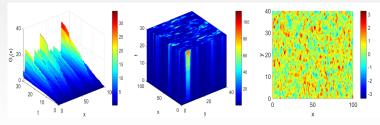


Figure – Stationary model, (left 1D, 2D middle). Gaussian field (right) = 🔍

Reliability result

Methodology and approach

Inference

- Spatial parameters :
 - σ^2 variance of Y l_c correlation length ν smoothness parameter
- Temporal parameters : $\alpha(t)$ shape parameter. $\eta = e^{\mu}$ deterministic scale.

Quantities of interest

• marginal law de G_t and failure time

$$T = \inf_{t>0} \left(G_t(\cdot) \geq g_F \right).$$

residual life time

$$extsf{RL}_t(au) = \left(au > 0; \; extsf{G}_{t+ au} \geq extsf{g}_{ extsf{F}} | extsf{G}_t = extsf{g}_t
ight)$$

Method of inference

- Method of moments
- maximum likelihood method

Methodology

• Estimation using realisations of G_t

(日)

• Estimation by quadrature

Quantities of Interest and parameters reference Simulation results

Reliability result

Marginal density of $G_t(x)$

$$f_t(v) = \frac{\eta^{\alpha(t)} v^{(\alpha(t)-1)}}{\Gamma(\alpha(t))} \int_{\mathbb{R}} \exp\left(-v\eta \exp(\sigma y) + \alpha(t)\sigma y\right) \xi(y) dy.$$

where ξ is the density of gaussian random variable N(0,1)

$$f_t^m(z) := \frac{\eta^{\alpha(t)} z^{(\alpha(t)-1)}}{\Gamma(\alpha(t))} \sum_{j=1}^m \exp\left(-z\eta \exp(\sigma y_j) + \alpha(t)\sigma y_j\right).$$

 $\{y_j\}_{j=1}^m$ m Hermite's polynomial roots, $\{w_j\}_{j=1}^m$ their weights. The order m is given by the stopped criterion,

$$|f_t^m - f_t^{m-1}| \le \epsilon,$$

where $\epsilon > 0$ is a convenient threshold

Reliability result

failure distribution

• failure time distribution

$$F_T(t) \approx 1 - \int_0^{g_F} f_t^m(z) dz,$$

$$\tilde{F}_{\mathcal{T}}(t_i) = (MN_x)^{-1} \sum_{j,k}^{N_x,M} \mathbb{I}_{\{G_{t_i}^k(x_j) \ge g_F\}}.$$

where $(G_{t_i}^k(x_j))$, $i = 1, ..., N_t$, $j = 1, ..., N_x$ realizations of G on the spatio-temporal box.

• Residual life distribution

$$P(RL_t > \tau) = \int_0^{g_F - g_t} \frac{u^{\delta_\tau \alpha - 1} g_t^{\alpha(t) - 1}}{B(\delta_\tau \alpha, \alpha(t))(u + g_t)^{(\alpha(\tau + t) - 1)}} \frac{f_{\tau + t}^m(u + g_t)}{f_t^m(g_t)} du$$

<ロト < 回 > < 回 > < 回 > < 回 > <</p>

э

Inference Result (stationary case $\alpha(t) = \alpha t$)

Method of moments

• $\hat{\Upsilon}_Y$ is the experimental variogram of Y :

$$\min_{\sigma, lc, \nu > 0} \sum_{l=1}^{N_x} \left(\hat{\Upsilon}_Y(lh) + \sigma^2 cov_\nu(lh) - \sigma^2 \right)^2,$$

• \hat{m}_1 , \hat{m}_2 are estimate of two first moments of $\log(\delta G_t)$, then :

$$\begin{pmatrix} \alpha \\ \eta \end{pmatrix} = \varphi^{-1} \begin{pmatrix} \hat{m}_1 \\ \hat{m}_2 \end{pmatrix}, \quad \text{où} \quad \varphi \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \psi(u\tau) - \log(v) \\ \psi_1(u\tau)) + \sigma^2 \end{pmatrix}$$

Maximum pseudo-likelihood method

• α et β maximize the pseudo-likelihood on the spatial grid

$$L(z) = \sum_{k=1}^{M} \sum_{j=1}^{N_t} \log\left(f_{\tau}^m(z_j^k)\right)$$

$N_x = 40, \ N_y = 20$			$N_x = 40, N_y = 20, N_t = 30$		
M	σ^2	l _c	M	α	η
1	0.638 <mark>(0.038)</mark>	0.913(0.087)	1	1.613(0.613)	2.660(0.71)
10	0.583(0.017)	1.06(0.06)	10	0.934(0.06)	1.833(0.134)
$N_x = 100, N_y = 40$			$N_x = 100, N_y = 40, N_t = 30$		
M	σ^2	l _c	M	α	η
1	0.58(0.02)	0.949(0.051)	1	0.801(0.198)	2.184(0.236)
10	0.606 <mark>(0.006)</mark>	1.007 <mark>(0.007)</mark>	10	1.072(0.07)	2.123(0.175)

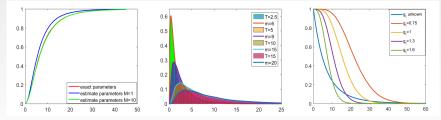


Figure - Failure distribution, marginal density, reliability and residual life

・ロト ・回ト ・ヨト ・ヨト

æ

Conclusion

- New degradation model which incorporate both hazards temporal and spatial
- Statistical analysis for assessing the law of the model
- Estimation of the quantities of interest for reliability analysis

Perspective

- Extension to bivariate and non-stationary model.
- Scale parameter as spatio-temporal field derived from mathématical models (EDPS, EDS)
- Perturbation with Brownian motion to integrate measurement error
- Optimization approach on NDT measurements